Stellabody®

ANTIBODY HEXAMERISATION TECHNOLOGY

Creating potent biologic therapeutics Burnet reach for the many

JUNE 2024 Non-confidential

THE PROBLEM

- Still lacking biological treatments that achieve functional cures and dramatic improvement in patient survival
- Key issues
 - Insufficient potency
 - Limitation in dosing approaches (due to dosing restrictions)
 - Lack of/or limited efficacy

Stellabody[®]

Stellabody[®] provides a SOLUTION

- A HEXAMERISING TECHNOLOGY that enhances:
 - clustering of antibodies on target cell surface
 - in a hexameric format for better cell signaling
 - complement killing (CDC)
- Leading to the development of better biologics

Stellabody[®] drives <u>on-target</u> hexamerisation

THE TECHNOLOGY: STELLABODY®

Modification at residue H429 of CH3 domain to H429<u>F</u> drives <u>on-target</u> hexamerisation, where antibodies form into clusters of six antibodies once bound to their target. These hexamers can:

- Amplify signaling by enhanced target clustering
- Trigger or enhance the complement cascade via C1q binding to initiate immune protection, for example, killing of a target cell or pathogen

Stellabody[®]- enabling the development of better biologics

VALUE PROPOSITION

Dose benefit

- Enabling lower doses for:
 - Lower Cost of Goods (COG's)
 - Exploring challenging routes of administration
 - subcutaneous
 - intraarticular

Increased Potency

- Potential to dose lower
- Potential to explore low abundance targets
- Potential to rescue stranded assets

Efficacy benefit

- Leading to increased therapeutic effects
- Rescuing assets with absent or low therapeutic effect
- Opens opportunity for exploring new targets

Safety benefit

 Lower potential for immunogenicity verses competitor

Stellabody[®]: Buried residue may lead to less risk of immunogenicity compared to competitor – Safety profile

THE TECHNOLOGY: STELLABODY®

A <u>buried</u> mutation:

Potentially less risk of immunogenicity versus a competitor hexamerisation technology (HexaBody[®]) that has mutated residues on the <u>surface of Fc</u>

Novel & Inventive:

International search report indicates Stellabody[®] substitution is novel & inventive over the prior art identified

Stellabody[®] has broad applicability

THE TECHNOLOGY: STELLABODY®

Signal amplification by target clustering

- Leading to enhanced agonism
- Example: Stellabody[®] DR5 mAbs enhanced cell killing *in vitro*
 - Colorectal cancer

Complement killing

- Leading to enhanced depletion of cells through:
 - Complement dependent cytotoxicity (CDC)
 - Phagocytosis
- Examples: Stellabody[®] CD38 mAbs and CD20 mAbs enhanced cell killing *in vitro and <u>ex-vivo</u> (CDC-mediated)*
 - Acute Lymphoblastic Leukemia (ALL)
 - B cell lymphoma (BLL)
 - Chronic Lymphocytic Leukemia (CLL)

Virus neutralisation

- Leading to enhanced killing of cells mimicking viral infection through:
 - CDC
 - Neutralisation
- Example: Stellabody [®] ACE2-Fc fusion protein [SARS-CoV-2]:
 - Enhanced killing of spike trimerpositive cells (CDC)
 - Gain of neutralisation potency against immunoevasive SARS-CoV-2 strain (% neutralisation)

Multiple indications e.g. cancer, infection, autoimmunity, inflammation

Four patent families – All solely owned by Burnet Institute

INTELLECTUAL PROPERTY

#1

"Immunotherapeutic proteins comprising an Fc region component with a mutation at position 429"

- PCT application: PCT/AU2022/051287
- International filing date: 26 Oct 2022
- Overview: Stellabody[®] platform

#2

'Antiviral agent
comprising a cellular
entry receptor and Fc
regions component''

- PCT application: PCT/AU2022/051285
- International filing date: 26 Oct 2022
- Overview: Stellabody[®] therapeutic against SARS-CoV-2 (i.e. ACE2-Fc)

#3

"Immunotherapeutic proteins"

- PCT application: PCT/AU2024/050463
- International filing date: 10 May 2024
- Overview: Stellabody[®]modified bispecific antibodies

#4

"Immunotherapeutic proteins"

- PCT application: PCT/AU2024/050468
- International filing date: 10 May 2024
- Overview: Use of Stellabody[®] in combination with mutations and novel immunoglobulin backbones to modulate antibody function

Opportunity to partner on a promising platform technology

NEXT STEPS

Burnet is seeking partners to incorporate Stellabody® technology in mAbs and mAb-like therapeutics

Current focus: Target-by-target partnerships *NB. We are open to other models*

POTENTIAL PARTNERSHIPS

- Research evaluations
- Co-development of new Stellabody[®]- containing biologic therapeutics
- Licensing

Stellabody[®]: Current development status

Strengthening and furthering scope of Stellabody[®] technology

Burnet Institute is advancing Stellabody[®] internally

Validation studies

Overall aim:

To assess preclinical efficacy of Stellabody[®] in *in vivo* and human clinical samples

Models

BACI

- Human clinical samples
- Animal models

Human clinical samples

VALIDATION STUDIES - HUMAN CLINICAL SAMPLES

AIM

To demonstrate efficacy of Stellabody[®] antibodies in patient samples

MODELS

Samples selected based on clinical stage and risk

- B Cell Lymphoma
- Leukaemia
- Multiple myeloma

READOUT

Complement killing (CDC) [Preliminary data available]

ANTIBODIES TESTED

Unmodified antibody, Stellabody[®] antibodies, competitor antibodies (HexaBody[®])

ANTIBODY TARGETS

- CD38
- CD20
 - Comparing to hexamerisation competitor (HexaBody[®])

TIMEFRAME

 Preliminary data from chronic lymphocytic leukemia (CLL) generated

Stellabody[®] CD20 mAb showed greater killing potency on cell samples from CLL patients

Study

- CD20 mAb (ofatumumab) was enhanced for potency using Stellabody[®]
- Stellabody[®] of a tumumab, HexaBody[®] of a tumumab and unmodified/wild-type of a tumumab were tested for their ability to induce cell death of leukaemic cells.

Cells: Blood samples from CLL patients Assay: EC50 values were measured in a CDC assay

Key Results

- Stellabody[®] of a tumumab exhibited greater potency on CLL patients' cells than wild-type (as shown by EC50 in graph to right)
- Stellabody[®] also exhibited equivalent potency to its direct competitor HexaBody[®].

Versions of ofatumumab tested on CLL patient cells

Animal studies

VALIDATION STUDIES - ANIMAL STUDIES

AIM

To test efficacy Stellabody[®] antibodies in *in vivo* mouse models, initially focusing on cancer

MODELS (Xenograft models)

- Solid cancer (planned)
 - Colon cancer
- Blood cancers (in progress)
 - B Cell Lymphoma
 - Leukaemia
- \Rightarrow Patient-derived cells (pdx) & Cell line-derived (cdx)

TIMEFRAME

Commenced November 2023

\mathbb{B}

ANTIBODY TARGETS

- DR5
- CD38
- CD20

READOUTS

- Tumour volume / growth
- Animal weight
- Metastases

Thank you

MS SERINA CUCUZZA (Executive General Manager Commercialisation) Email: serina.cucuzza@burnet.edu.au

burnet.edu.au